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Front Matter Preface

Introduction
ree

Disclaimer: I make absolutely no guarantee that this document is complete nor without error. In
particular, any content covered exclusively in lectures (if any) will not be recorded here. This document
was written during the 2023 academic year, so any changes in the course since then may not be accurately
reflected.

Notes on formatting
New terminology will be introduced in italics when used for the first time. Named theorems will also be
introduced in italics. Important points will be bold. Common mistakes will be underlined. The latter
two classifications are under my interpretation. YMMV.

Content not taught in the course will be outlined in the margins like this. Anything outlined like this
is not examinable, but has been included as it may be helpful to know alternative methods to solve
problems.

The table of contents above, and any inline references are all hyperlinked for your convenience.

History
First Edition: 2024-04-06∗

Current Edition: 2024-04-15

Authors
This document was written by R.J. Kit L., a maths student. I am not otherwise affiliated with the
university, and cannot help you with related matters.

Please send me a PM on Discord @Desync#6290, a message in the WMX server, or an email to War-
wick.Mathematics.Exchange@gmail.com for any corrections. (If this document somehow manages to
persist for more than a few years, these contact details might be out of date, depending on the main-
tainers. Please check the most recently updated version you can find.)

If you found this guide helpful and want to support me, you can buy me a coffee!

(Direct link for if hyperlinks are not supported on your device/reader: ko-fi.com/desync.)

∗Storing dates in big-endian format is clearly the superior option, as sorting dates lexicographically will also sort dates
chronologically, which is a property that little and middle-endian date formats do not share. See ISO-8601 for more details.
This footnote was made by the computer science gang.
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MA3K4 Glossary

1 Glossary

H ≤ G H is a subgroup of G.

H ⊴ G H is a normal subgroup of G.

gH A coset of H in G; the set gH = {gh : g ∈ G}.

G/H The set of left cosets of H in G; the set {gH : g ∈ G}.

G/N The quotient or factor group of G by N ; the set of left cosets of a normal subgroup
N in G, equipped with the operation gN ◦ hN = ghN

[G : H] The index of H in G; the cardinality |G/H|; the number of distinct left cosets of H
in G.

gh The conjugation of h by g; the element ghg−1.

gH The conjugation of a subset H ⊆ G by an element g ∈ G; the set gHg−1 = {ghg−1 :
h ∈ H}.

NG(H) The normaliser of H in G; the set {g ∈ G : gHg−1 = H}. The normaliser is always
a subgroup of G.

CG(x) The centraliser or commutant of x in G; the set of elements that commute with x;
the set {g ∈ G : gx = xg}. The centraliser is always a subgroup of G.

Z(G) The centre of G; the set of elements that commute with all elements of G; the set
{g ∈ G : ∀h ∈ G : gh = hg}. The centre is always a normal subgroup in G.

Cl(x), Gx The conjugacy class of x; the set {gxg−1 : g ∈ G}.

OrbG(x) The orbit of x in G; the set of possible images of x under an action; the set {g · x :
g ∈ G}.

StabG(x) The stabiliser of x in G; the set of elements that fix x; the set {g ∈ G : g · x = x}.
The stabiliser is always a subgroup of G.

fixX(g) The set of fixed points of g; the set {x ∈ X : g · x = x}.

Sylp(G) The set of Sylow p-subgroups of G.

Fp(G) The set {x ∈ G : x ̸= 1G and |x| is a power of p}.

Introduction to Group Theory | 1



MA3K4 Glossary

|G|p The highest power of p that divides G; if |G| = pnm, then |G|p = pn.

H ⋉ϕ K The semidirect product of H and K; the set H×K equipped with the multiplication
(h1,k1) · (h2,k2) := (h1h2,ϕh−1

2
(k1)k2), where ϕ : H → Aut(K) is a homomorphism

and ϕ(h) = ϕh.

[g,h] The commutator of g and h; the element ghg−1h−1.

[G,G] The commutator subgroup of G; the subgroup generated by
〈
[g,h]

∣∣ g,h ∈ G
〉
.

[H,K] The commutator subgroup of H and K, given H,K ≤ G; the subgroup generated
by

〈
[h,k]

∣∣ h ∈ H,k ∈ K
〉
.

Gab The abelianisation of G; the abelian quotient group G/[G,G].

G(n) The nth derived subgroup of G, where G(0) = G and G(n) =
[
G(n−1),G(n−1)

]
for

n ∈ N.

Introduction to Group Theory | 2
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2 Review

Recall that a group is a pair (G,◦), consisting of an underlying set G and a group operation ◦ : G×G → G
that satisfies the following properties:

(G1) ∀a,b,c ∈ G : (a ◦ b) ◦ c = a ◦ (b ◦ c) (associativity);

(G2) ∃1G ∈ G,∀g ∈ G : g ◦ 1G = 1G ◦ g = g (existence of identity);

(G3) ∀g ∈ G,∃g−1 ∈ G : g ◦ g−1 = g−1 ◦ g = 1G (existence of inverses).

The group is furthermore abelian if the group operation additionally satisfies

(A) ∀a,b ∈ G : a ◦ b = b ◦ a (commutativity).

When the context is clear, we will usually omit the operation and simply say that G is a group.

Sometimes, closure of ◦ over the set G is also included as an axiom, but this is implicit in ◦ being an
operation over G.

It follows from these axioms that the identity element and the inverse of any given element g are unique,
so we are justified in calling them the identity and the inverse of g.

The number of elements in a group G is called the order of G, and is denoted by |G|. (This coincides
with the cardinality of the underlying set, so the notation is meaningful.)

Theorem 2.1 (Basic Properties of Groups).

• If ga = gb or ag = bg, then a = b (cancellative property);

• The identity element 1G is unique;

• For every element g, the inverse g−1 is unique;

• If eℓ is a left identity (i.e. eℓg = g for all g ∈ G), and/or er is a right identity, then eℓ = 1G = er;

• If ℓ is a left inverse for an element g (i.e. ℓg = 1G), and/or r is a right inverse for g, then
ℓ = g−1 = r;

• For all a,b ∈ G, (ab)−1 = b−1a−1;

• For all g ∈ G, (g−1)−1 = g.

2.1 Symmetric Groups
Let X be a finite set. We write Sym(X) for the set of bijections f : X → X. This set has group structure
under composition:

(G1) For any functions f,g,h ∈ Sym(X) and x ∈ X,
(
(f ◦ g) ◦ h

)
(x) = f

(
g(h(x))

)
=

(
f ◦ (g ◦ h)

)
(x);

(G2) The identity function idX is the identity element;

(G3) The inverse function f−1 for a function f is also its inverse in the group.

This group is called the symmetric group on X, and its elements are called permutations.

The symmetric group is abelian if and only if |X| ≤ 2.

2.1.1 Cycle Notation

Let a1,a2, . . . ,ar be distinct elements of a set X. The cycle (a1,a2, . . . ,ar) represents the permutation
f ∈ Sym(X) with

• f(ai) = ai+1 for 1 ≤ i < r;

Introduction to Group Theory | 3



MA3K4 2.2 General Linear Groups

• f(ar) = a1;

• f(b) = b for b ∈ X \ {a1,a2, . . . ar};

The empty cycle () is a cycle, corresponding to the identity permutation idX .

Two cycles (a1, . . . ,ar) and (b1, . . . ,bs) are disjoint if {a1, . . . ,ar} ∩ {b1, . . . ,bs} = ∅.

Note that the representation of a permutation in cycle notation is not unique. For instance, (1,2,3) =
(3,1,2) = (2,3,1).

Theorem 2.2.

•
∣∣Sym(X)

∣∣ = |X|!.

• Every permutation in Sym(X) can be expressed as a product of disjoint cycles.

Moreover, this product is unique in the sense that if f ∈ Sym(X) has representations f = f1 · · · fm =
g1 · · · gn, where the fi and gi are disjoint cycles of length greater than 1, then m = n and
{f1, . . . ,fm} = {g1, . . . ,gn}.

2.2 General Linear Groups
Let K be a field and n be a positive integer. We define the set GLn(K) to be the set of invertible n× n
matrices with entries in K. Under the operation of matrix multiplication, this set forms a group called
the general linear group of dimension n over K.

Recall that if K is a field (or more generally, a ring), then the characteristic of K is the smallest positive
number p such that

p1K = 1K + · · ·+ 1K︸ ︷︷ ︸
p

= 0K

if such a number exists, and 0 otherwise. In the finite case, such a number will always exist, and moreover,
this number is prime. The characteristic also satisfies

|K| = pn

for some positive integer n.

Theorem 2.3. Let K be a finite field, and let q = |K|. Then,

∣∣GLn(K)
∣∣ = q(

n
2)

n∏
i=1

(qi − 1)

2.3 Orders of Elements
In multiplicative notation, we write gn to mean the n-fold iteration of the group operation on g. If n = 0,
then gn = 1G, and if n < 0, then gn = (g−1)n.

Let G be a group, and let g ∈ G. The order of g, denoted by |g| is the smallest positive integer n such
that gn = 1G, if such a number exists, and ∞ otherwise:

|g| :=

{
min{n ∈ Z+ : gn = 1G} ∃n ∈ Z+ : gn = 1G

∞ otherwise

Theorem 2.4.

• The identity element 1G is the unique element of order 1.

• For all g ∈ G, |g| = |g−1|.

Introduction to Group Theory | 4
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Proof. Clearly, 1G has order 1. Now suppose an element e ∈ G also has order 1. Then, e = e1 = 1G, so
e = 1G.

Suppose |g| = n. Then, (g−1)n = (gn)−1 = (1G)
−1 = 1G, so |g−1| = n. ■

Lemma 2.5. Let G be a group and let a,b ∈ G have finite order. Then,

(i) If ℓ ∈ Z+, then aℓ = 1G if and only if n divides ℓ;

(ii) If m ∈ Z+, then |am| = |a|/ gcd(|a|,m);

(iii) If a and b commute, then |ab| divides lcm(|a|,|b|);

(iv) If a and b commute and ⟨a⟩ ∩ ⟨b⟩ = {1G}, then |ab| = lcm(|a|,|b|).

2.4 Subgroups
A subset H ⊆ G of a group G is a subgroup of (G,◦) if (H,◦) is itself a group, and we write H ≤ G to
denote this relation.

Lemma 2.6. Let H ⊆ G be a non-empty subset. Then, H ≤ G if and only if for all g,h ∈ H, we have
gh−1 ∈ H.

Given an element g ∈ G, the (cyclic) subgroup generated by g is the subgroup defined by

⟨g⟩ := {gi : i ∈ Z}

and we say that g is a generator of G. Conversely, a group is called cyclic if it is in this form.

Lemma 2.7. If G = ⟨g⟩ is cyclic, then |G| = |g|.

More generally, given a non-empty subset S ⊆ G, the subgroup generated by S is the subgroup defined
by

⟨S⟩ := {sϵ11 sϵ22 · · · sϵmm : m ∈ N,si ∈ S,ϵi ∈ {±1}}

That is, the subgroup containing all linear combinations of elements in S. If S = {s1, . . . ,sn}, then we
also write ⟨S⟩ = ⟨s1, . . . ,sn⟩ for this subgroup.

2.4.1 Cosets

Given a subgroup H ≤ G of a group G and an element g ∈ G, the left coset gH of H in G is the set

gH = {gh : h ∈ H} ⊆ G

Lemma 2.8. Let G be a group and H ≤ G a subgroup. Then, the following are equivalent for all g,k ∈ G:

(i) k ∈ gH;

(ii) gH = kH;

(iii) g−1k ∈ H.

Proof. (i) → (ii): Note that hH = H for all h ∈ H. Now, if k ∈ gH, then k = gh for some h ∈ H, so
kH = (gh)H = g(hH) = gH.

(ii) → (iii): Because H is a subgroup, 1G ∈ H, so k = k1G ∈ kH. If kH = gH, then also k ∈ gH, so for
some h ∈ H, k = gh, so g−1k = h ∈ H.

(iii) → (i): If g−1k = h ∈ H, then k = gh ∈ gH. ■

Introduction to Group Theory | 5
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Let G be a group and H ≤ G be a subgroup. Define the relation ∼H on G with g ∼H h if and only if
gH = hH.

Corollary 2.8.1. ∼H is an equivalence relation on G.

Lemma 2.9. Let G be a group and H ≤ G be a subgroup. Then,

(i) For all g,h ∈ G, either gH = hH or gH ∩ hH = ∅;

(ii) If {giH}i∈I is the set of ∼H-equivalence classes in G, then

G =
⊔
i∈I

giH

Proof. Since ∼H is an equivalence relation, distinct ∼H -equivalence classes are pairwise disjoint and
partition G. Both parts follow. ■

Theorem 2.10 (Lagrange). Let G be a finite group and let H ≤ G be a subgroup. Then, |H| divides
|G|. Specifically,

|G| = |G : H||H|

Proof. The left cosets of H in G partition G by the previous lemma. Also, each left coset gH is
equinumerous to H since h 7→ gh is a bijection H → gH (with inverse given by h 7→ g−1h), and the
number of left cosets is the index [G : H]. The result follows. ■

Let G be a group and H ≤ G be a subgroup.

• The set of left cosets of H in G is denoted by G/H := {gH : g ∈ G}.

• The number of distinct left cosets of H in G (i.e. the cardinality |G/H|) is called the index of H
in G, and is denoted by [G : H]. If G is finite, then

[G : H] = |G|/|H|

Corollary 2.10.1. Let G be a finite group and let g ∈ G. Then |g| divides |G|.

Proof. The subgroup ⟨g⟩ has order |g|. The result follows from Lagrange’s theorem. ■

2.5 Normal Subgroups

Lemma 2.11. Let H ≤ G be a subgroup of a group G, and let g ∈ G. Then, gH = gHg−1 = {ghg−1 :
h ∈ H} is a subgroup of G.

Let G be a group and let H ≤ G be a subgroup.

• H is normal in G if gHg−1 = H for all g ∈ G, and we write H ⊴ G to denote this relation.

• The normaliser of H in G, is the subgroup of G defined by

NG(H) := {g ∈ G : gHg−1 = H}

Note that H is normal in G if and only if NG(H) = G.

Theorem 2.12. Let G be a group and let H ≤ G be a subgroup. Then,

(i) H is normal in G if and only if gHg−1 ⊆ H for all g ∈ G;

(ii) If [G : H] = 2, then H is normal in G;

Introduction to Group Theory | 6
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(iii) H ⊴ NG(H) ≤ G;

(iv) G ⊴ G;

(v) {1G} ⊴ G.

A non-trivial group G is simple if the only normal subgroups of G are {1G} and G.

Given subsets A,B ⊆ G of a group G, we write AB := {ab : a ∈ A,b ∈ B} for the internal product of A
and B. In general, this is not a subgroup, even if A and B are both subgroups.

Lemma 2.13. Let N be normal in G, and let g,h ∈ G. Then, (gN)(hN) = ghN .

Let N be normal in G. Then, the binary operation ◦ : G/N×G/N → G/N defined by (gN)◦(hN) = ghN
is called the natural binary operation of G/H.

With the natural binary operation ◦, (G/N,◦) is a group called the quotient or factor group of G by N .

2.6 Group Homomorphisms
Let (G,◦) and (H,∗) be groups.

A map ϕ : G → H is a group homomorphism if ϕ(g ◦ h) = ϕ(g) ∗ ϕ(h) for all g,h ∈ G.

If ϕ is a homomorphism and has an inverse (or equivalently, is bijective), then φ is an isomorphism, and
we say that G and H are isomorphic, written as G ∼= H. An isomorphism from a group to itself is also
called an automorphism.

We define the kernel and image of a homomorphism ϕ as the sets

ker(ϕ) := {g ∈ G : ϕ(g) = 1G}
im(ϕ) := {ϕ(g) : g ∈ G}

Let N be normal in G. A the map π : G → G/N defined by π(g) = gN is a surjective homomorphism
called the quotient map or natural homomorphism from G to G/N .

Theorem 2.14. If n and m are coprime, then Cn × Cm
∼= Cnm.

Theorem 2.15 (First Isomorphism Theorem). Let G and H be groups, and let ϕ : G → H be a group
homomorphism. Then,

(i) ker(ϕ) ⊴ G;

(ii) im(ϕ) ≤ H;

(iii) G/ ker(ϕ) ∼= im(ϕ).

Theorem 2.16 (Second Isomorphism Theorem). Let G be a group, H ≤ G a subgroup, and N ⊴ G be
normal in G. Then,

(i) NH = HN ≤ G;

(ii) H ∩N ⊴ H;

(iii) H/(H ∩N) ∼= NH/N .

Theorem 2.17 (Third Isomorphism Theorem). Let G be a group, and let N,K ⊴ G be normal in G
with N ⊆ K ⊆ G. Then,

(i) K/N ⊴ G/N ;

(ii) (G/N)/(K/N) ∼= G/K.

Introduction to Group Theory | 7
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Theorem 2.18 (Correspondence Theorem). Let G be a group, and let N ⊴ G be normal in G. Then,
there is a bijection between the subgroups of G containing N and the subgroups of G/N . More precisely,
the map

f : {S : S ≤ G/N} → {S : N ≤ S ≤ G} : S 7→ S/N

is a bijection, and moreover, this map sends normal subgroups to normal subgroups.

3 Permutation Groups

Let X be a set. A subgroup of Sym(X) is called a permutation group on X.

For g ∈ Sym(X), the support of g is the set

supp(g) := {x ∈ X : g(x) ̸= x}

and for a permutation group G, the support of G is the set

supp(G) := {x ∈ X : g(x) ̸= x}

If G = ⟨g⟩ ≤ Sym(X), then supp(⟨g⟩) = supp(g). Also note that if

g = (a1, . . . ,am1
) · · · (amt−1+1, . . . ,amt

)

is a product of disjoint cycles, then

supp(g) = {a1, . . . ,am1 ,am1+1, . . . ,amt−1+1, . . . ,amt}

Theorem 3.1. Let X be a finite set. Then,

(i) Disjoint cycles in Sym(X) commute;

(ii) If f = (a1, . . . ,ar) ∈ Sym(X) is a cycle of length r, then f has order |f | = r.

More generally, if f = f1 · · · fm is a product of disjoint cycles, then f has order

|f | = lcm
(
|f1|, . . . ,|fm|

)
(iii) Let f = (a1, . . . ,ar) ∈ Sym(X) and g ∈ Sym(X). Then,

gf = gfg−1 =
(
g(a1), . . . ,g(ar)

)
Let n ≥ 3 and set X = {1, . . . ,n}. Define the permutations σ,τ ∈ Sym(X) by

σ := (1, . . . ,n)

τ :=

⌊n
2 ⌋∏

i=1

(i,n− i+ 1)

Then, the dihedral group D2n of order 2n is the subgroup of Sym(X) generated by σ and τ .

Example. If n = 8, then
D16 =

〈
{(1,2,3,4,5,6,7,8),(1,8)(2,7)(3,6)(4,5)}

〉
△

Lemma 3.2. If H,K ≤ G with H = ⟨A⟩ finite and K = ⟨B⟩ for some subsets A,B ⊆ G, then K ⊆
NG(H) if and only if ba ∈ H for all a ∈ A and b ∈ B.

Introduction to Group Theory | 8
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Theorem 3.3. Let n ≥ 3 and D2n =
〈
{σ,τ}

〉
. Then,

(i) |D2n| = 2n;

(i) ⟨σ⟩ ⊴ D2n, and |⟨σ⟩| = n. In particular, D2n is not simple.

Let X be a finite set. A permutation f ∈ Sym(X) is even if it has an even number of cycles of even
length in its decomposition into disjoint cycles, and is odd otherwise.

Equivalently, a permutation is even if it can be decomposed into an even number of not necessarily
disjoint transpositions and odd otherwise.

The set Alt(X) := {f ∈ Sym(X) : f is even} is the alternating group on X, and is a subgroup of Sym(X)
of order |X|!/2. That is, [Sym(X) : Alt(X)] = 2.

Theorem 3.4. If X and Y are finite sets with |X| = |Y |, then Sym(X) ∼= Sym(Y ).

Proof. For any bijection F : Y → X, the homomorphism ϕ : Sym(X) → Sym(Y ) defined by ϕ(f) =
F−1 ◦ f ◦ F is an isomorphism. ■

We write Sn for the symmetric group on the set {1, . . . ,n}. By the previous theorem, Sym(X) ∼= Sn

whenever |X| = n.

3.1 Group Actions
Let G be a group and X a set. A (left) group action of G on X is a map · : G×X → X such that

(i) (gh) · x = g · (h · x) for all g,h ∈ G and x ∈ X;

(ii) 1G · x = x for all x ∈ X.

In this case, we say that G acts on X or that X is a G-set.

Three important group actions are as follows:

• Left-multiplication:

Let G be a group and take X = G. Then, g · x := gx defines an action of G on itself:

(i) (gh) · x = (gh)x = g(hx) = g · (h · x);

(ii) 1G · x = 1Gx = x.

• Conjugation:

Let G be a group and take X = G. Then, g · x := gxg−1 defines an action of G on itself:

(i) (gh) · x = (gh)x(gh)−1 = ghxh−1g−1 = g · (hxh−1) = g · (h · x);

(ii) 1G · x = 1Gx1
−1
G = x.

• Action on Cosets:

Let G be a group and H ≤ G be a subgroup. Take X = G/H := {gH : g ∈ G} to be the set of left
cosets of H in G. Then, g · (xH) = (gx)H defines a group action on this set of cosets:

(i) (gh) · xH = g(hxH) = g · (hxH) = g · (h · xH);

(ii) 1G · xH = (1Gx)H = xH.

Theorem 3.5 (Group Action Induces Homomorphism into Symmetric Group). Let · be an action of a
group G on a set X. For g ∈ G, define the map ϕ(g) : X → X by ϕ(g)(x) = g ·x. Then, ϕ(g) ∈ Sym(X)
and ϕ : G → Sym(X) is a homomorphism.
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Proof. For any g,h ∈ G and x ∈ X,

ϕ(gh)(x) = (gh) · x
= g · (h · x)
=

(
ϕ(g)ϕ(h)

)
(x) ■

Let · be an action of a group G on a set X. The kernel of the action · , denoted ker(G,X, · ), is defined
to be the kernel of the homomorphism ϕ : G → Sym(X) as defined above:

ker(G,X, · ) := {g ∈ G : ∀x ∈ X, g · x = x} ⊆ G

The image of the action · , denoted im(G,X, · ) is the image of ϕ:

im(G,X, · ) := {ϕ(g) : g ∈ G} ⊆ Sym(X)

Note that by the first isomorphism theorem, we have

• ker(G,X, · ) ⊴ G;

• im(G,X, · ) ≤ Sym(X).

The action · is faithful if the kernel is trivial, ker(G,X, · ) = {1G}, and trivial if the kernel is the entire
group, ker(G,X, · ) = G.

Example.

(i) The left-multiplication action of a group on itself is always faithful.

(ii) The conjugation action of a group on itself is trivial if and only if gxg−1 = x for all g,x ∈ G. That
is, if and only if G is abelian.

(iii) If G acts on the set G/H of cosets of a subgroup H ≤ G, then the action is trivial if and only if
gH = H for all g ∈ G. That is, if and only if H = G.

So, if H is a proper subgroup of G, then ker(G,G/H, · ) is a proper normal subgroup of G.

△

Theorem 3.6. If · is a faithful action of G on X, then G is isomorphic to a subgroup of Sym(X).

Proof. As · is faithful, we have G/ ker(G,X, · ) = G/{1G} ∼= G, so by the first isomorphism theorem,

G ∼= G/ ker(G,X, · )
∼= im(G,X, · )
≤ Sym(X)

■

Let · be an action of a group G on a set X, and let x ∈ X.

The orbit of x in G is the set of possible images of x under the action:

OrbG(x) := {g · x : g ∈ G} ⊆ X

The stabiliser of x in G is the set of elements of G that fix x:

StabG(x) := {g ∈ G : g · x = x} ⊆ G
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The centraliser or commutant of x in G is the set of elements that commute with x:

CG(x) := {g ∈ G : gx = xg}

(This notion is independent from group actions.)

Lemma 3.7. The stabiliser and centraliser of any element g ∈ G are subgroups of G.

The centre of G is the set of elements of G that commute with every element of G:

Z(G) = {g ∈ G : ∀h ∈ G : gh = hg}

Note that
Z(G) =

⋂
g∈G

CG(g)

so, as an intersection of subgroups, the centre is itself a subgroup (and is in fact normal in G).

Example. We compute the orbits and stabilisers of the three group actions from before.

• Left-multiplication (X = G, g · x := gx):

For any y ∈ X = G, we have y−1x ∈ G, so y = (y−1x) · x and y ∈ OrbG(x), so OrbG(x) = X for
all x ∈ X. Also, g · x = gx = x if and only if g = 1G, so StabG(x) = {1G} for all x ∈ G.

• Conjugation (X = G, g · x := gxg−1):

The orbit OrbG(x) = {gxg−1 : g ∈ G} of an element x ∈ X under conjugation is also called the
conjugacy class of x in G, also written as Cl(x) or Gx.

For any g ∈ G, g · x = gxg−1 = x if and only if gx = xg, so StabG(x) = CG(x) for all x ∈ X = G.
Also,

ker(G,X, · ) = {g ∈ G : ∀x ∈ X : g · x = x}
= {g ∈ G : ∀x ∈ X : gxg−1 = x}
= Z(G)

• Action on Cosets (X = G/H, g · (xH) = (gx)H):

The stabiliser of xH ∈ X is

StabG(xH) = {g ∈ G : g · xH = xH}
= {g ∈ G : (gx)H = xH}
= {g ∈ G : (x−1gx)H = H}
= {g ∈ G : (x−1gx) ∈ H}
= xHx−1

= xH

Also, if xH,yH ∈ X, then (yx−1) · xH = yH, so OrbG(xH) = X for all xH ∈ X.

△

Theorem 3.8. Let · be an action of a group G on a set X, and let x ∈ X. Then,

(i) StabG(X) ≤ G;

(ii)
⋂

x∈X StabG(x) = ker(G,X, · ).
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Theorem 3.9 (Orbit-Stabiliser). Let G be a group acting on a finite set X and let x ∈ X. Then,

|OrbG(x)| = [G : StabG(x)] =
|G|

|StabG(x)|

Corollary 3.9.1. Let G be a finite group acting on a set X. Then,

(i) For all x,y ∈ X, either OrbG(x) = OrbG(y), or OrbG(x) ∩OrbG(y) = ∅. That is, orbits partition
X.

(ii) |OrbG(x)| divides |G|.

Proof.

(i) Define a relation ∼ on X such that x ∼ y if and only if y = g · x for some g ∈ G. This relation is
reflexive, by taking g = 1G; symmetric, by taking inverses; and transitive, by multiplying the given
g values with the group operation.

So, ∼ is an equivalence relation. The result then follows immediately from equivalence classes
partitioning sets.

(ii) Follows immediately from the orbit-stabiliser theorem.

■

Theorem 3.10 (Cayley). Every finite group G is isomorphic to a subgroup of a symmetric group.

Proof. The kernel of the left-multiplication action of G on itself is the set

ker(G,G, · ) = {g ∈ G : ∀x ∈ X : gx = x}

For any g ∈ G such that gx = x for all x ∈ G, we have g1G = 1G, so g = 1G, and hence the kernel is
trivial, so the action is faithful. The result then follows from Theorem 3.6. ■

Theorem 3.11. Let G be a finite group with |G| = pn for a prime p and n ≥ 1. Then, |Z(G)| > 1.

Proof. By Corollary 3.9.1, |Gx| = |OrbG(x)| divides |G|, so |Gx| is a power of p.

By definition, Z(G) = {x ∈ G : |Gx| = 1}. Suppose |Z(G)| = 1, so only one conjugacy class has
cardinality 1, and the rest have cardinality pai . Since orbits partition G, the cardinality of G is equal to
the sum of the cardinalities of the orbits:

|G| = 1 + pa1 + · · ·+ pak

However, this has residue 1 modulo p, contradicting that |G| = pn ≡ 0 (mod p). ■

Corollary 3.11.1. Let G be a finite group with |G| = pn for a prime p and natural n. Then,

(i) If n = 2, then G is abelian.

(ii) If n = 3, then either G is abelian, or |Z(G)| = p.

Theorem 3.12 (Cauchy). Let G be a finite group and let p be a prime divisor of |G|. Then, G has an
element of order p. Moreover, the number of elements of G of order p is congruent to −1 modulo p.

Theorem 3.13. Let G be a finite group and let H,K ≤ G. Then,

|HK| = |KH| = |H||K|
|H ∩K|
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Theorem 3.14. Let G be a finite group and let H,K ≤ G. Then,

|G : H ∩K| ≤ |G : H||G : K|

3.2 Fixed Points
Let G be a group acting on a set X, and let g ∈ G.

An element x ∈ X is a fixed point if g · x = x. The set of all fixed points for a given g ∈ G is denoted by

fixX(g) := {x ∈ X : g · x = x}

An element g ∈ G is fixed point free if fixX(g) = ∅.

Lemma 3.15 (Burnside). Let G be a finite group acting on a finite set X, and let X/G := {OrbG(x) :
x ∈ X} be the set of orbits in G. Then,

|X/G| = 1

|G|
∑
g∈G

|fixX(g)|

This lemma was stated and proved by Burnside in his 1897 book on finite groups, but attributed it to
Frobenius, 1887. However, even before Frobenius, the result was known to Cauchy in 1845. Consequently,
this lemma is sometimes called the lemma that is not Burnside’s, or just the not-Burnside lemma.

Proof. First, the sum can be rewritten as∑
g∈G

|fixX(g)| =
∣∣{(g,x) ∈ G×X : g · x = x

}∣∣
=

∑
x∈X

|StabG(x)|

Then, by the orbit-stabiliser theorem,

|StabG(x)| =
|G|

|OrbG(x)|
so ∑

x∈X

|StabG(x)| =
∑
x∈X

|G|
|OrbG(x)|

= |G|
∑
x∈X

1

|OrbG(x)|

Let Y be the set of distinct orbits in X. Note that X is partitioned by its orbits, so,

= |G|
∑

A∈X/G

∑
x∈A

1

|OrbG(x)|

= |G|
∑

A∈X/G

∑
x∈A

1

|A|

= |G|
∑

A∈X/G

1

= |G||X/G|

and the result follows. ■
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The action of G on X is transitive if for any two points x,y ∈ X, there exists g ∈ G such that g · x = y.
Or equivalently, if G only has one orbit, or OrbG(x) = X for all x ∈ X.

Corollary 3.15.1. If a finite group G acts transitively on a finite set X with |X| > 1, then G contains
a fixed point free element.

Proof. Suppose G does not contain any fixed point free elements, so |fixX(g)| ≥ 1 for all g ∈ G. Then,
G acts transitively, so |X/G| = 1, and Burnside’s lemma gives

|G| =
∑
g∈G

|fixX(g)|

= |fixX(y)|+
∑

g∈G\{1G}

|fixX(g)|

= |X|+
∑

g∈G\{1G}

|fixX(g)|

≥ |X|+ |G| − 1

so 1 ≥ |X|, contradicting that 1 < |X|. ■

4 The Sylow Theorems

Lagrange’s theorem states that if H is a subgroup of a finite group G, then |H| divides |G|. Does the
converse hold? That is, if G is a finite group, and r divides |G|, then does G contain a subgroup H of
order r?

In general, this is not the case. For instance, if G is a non-abelian finite simple group, then G has no
subgroup of order |G|/2. Such a subgroup H would have index 2 in G and would be a proper normal
subgroup of G; also, G is non-abelian, so |G| > 2 and 1 < |H| < |G|, contradicting that G is simple.

We write |G|p to denote the highest power of p that divides G. That is, if |G| = pnm with p,m coprime,
then |G|p = pn.

• A subgroup H ≤ G is a p-subgroup of G if |H| is a power of p.

• Let P ≤ G and suppose |P | = |G|p. Then, P is called a Sylow p-subgroup of G.

• We write SylP (G) to denote the set of Sylow p-subgroups of G.

Example. Take G = S4. We have |G| = 4! = 23 · 3, so |G|2 = 23 and |G|3 = 3.

1. P = {1G,(1,2,3),(3,2,1)} has order |P | = 3 = |G|3, so P is a Sylow 3-subgroup of G;

2. K4 = {1G,(1,2)(3,4),(1,3)(1,4),(1,4)(2,3)} has order |K4| = 2 ̸= |G|2, so K4 is a 2-subgroup of G,
but not a Sylow 2-subgroup;

3. D8 = ⟨σ,τ⟩ with σ = (1,2,3,4) and τ = (1,4)(2,3) has order |D8| = 8 = |G|2, so D8 is a Sylow
2-subgroup of G.

4. A4 is not a p-subgroup of G for any prime p.

5. The trivial subgroup {1G} is a Sylow p-subgroup for all prime p.

△

Theorem 4.1 (Sylow). Let G be a finite group with order |G| = pnm with p,m coprime. Then,

1. G has at least one Sylow p-subgroup.
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2. All Sylow p-subgroups of G are conjugate. That is, if H and K are Sylow p-subgroups of G, then
there exists an element g ∈ G such that gHg−1 = K.

3. Any p-subgroup of G is contained in a Sylow p-subgroup of G.

4. The number r of Sylow p-subgroups of G satisfies r ≡ 1 (mod p) and r | m.

4.1 Applications
By Sylow theorem 2, G acts on Sylp(G) by conjugation, and for any P ∈ Sylp(G), OrbG(P ) = Sylp(G).
The stabiliser of P under conjugation is then the normaliser:

StabG(P ) = {g ∈ G : g · P = P}
= {g ∈ G : gPg−1 = P}
= {g ∈ G : gP = Pg}
= NG(P )

Corollary 4.1.1. Let G be a finite group, p be a prime divisor of |G|, and P ∈ Sylp(G). Then,

(i) |Sylp(G)| = [G : NG(P )];

(ii) |Sylp(G)| divides |G|/|G|p;

(iii) P ⊴ G if and only if |Sylp(G)| = 1. That is, unique Sylow p-subgroups are normal.

Proof.

(i) By the orbit-stabiliser theorem

|Sylp(G)| = |OrbG(P )|
= [G : StabG(P )]

= [G : NG(P )]

(ii) Since P ≤ NG(P ), by Lagrange’s theorem, |NG(P )| = |P ||NG(P ) : P |. Then,

|Sylp(G)| = [G : NG(P )]

=
|G|

|NG(P )|

=
|G|

|P |[NG(P ) : P ]

which divides |G|
|P | =

|G|
|G|p .

(iii) P ⊴ G if and only if G = NG(P ). Then, by the orbit-stabiliser theorem,

|OrbG(P )| = |G|
|StabG(P )|

|Sylp(G)| = |G|
|NG(P )|

so G = NG(P ) if and only if |SylP (G)| = 1.

■
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Corollary 4.1.2. Let G be a finite group and let p be a prime divisor of |G|. Define the set

Fp(G) := {x ∈ G : x ̸= 1G and |x| is a power of p}

Then,

(i)

Fp(G) =
⋃

P∈Sylp(G)

(P \ {1G})

(ii) |Fp(G)| ≥ |G|p − 1, with equality if and only if |Sylp(G)| = 1;

(iii) If |G|p = p, then |Fp(G)| = |Sylp(G)|(p− 1), with equality if and only if |Sylp(G)| = 1.

4.1.1 Proving Groups of a Particular Order are Not Simple

Example. Let G be a group of order 20 = 22 × 5. Can G be simple?

By Sylow’s first theorem, G has Sylow 5-subgroups. By Sylow’s fourth theorem, the number r of Sylow
5-subgroups divides 22 and satisfies r ≡ 1 (mod 5). It follows that r = 1 is the only value that satifies
this requirement, so G has a unique Sylow 5-subgroup, which must be normal in G and hence G cannot
be simple. △

Example. Let G be a group of order 48 = 24 × 3. Can G be simple?

By Sylow theorem 1, G has Sylow 2-subgroups and Sylow 3-subgroups. By Sylow’s fourth theorem, the
number r of Sylow 2 subgroups divides 3 and satisfies r ≡ 1 (mod 2). We must have r = 1,3, so G has
either 1 or 3 Sylow 2-subgroups.

If there is only 1 Sylow 2-subgroup, then it is normal in G. Otherwise, G has 3 Sylow 2-subgroups
and G acts non-trivially (and transitively) on Syl2(G) by conjugation. This action induces a non-trivial
homomorphism ϕ : G → S3 (as in Theorem 3.5).

By the first isomorphism theorem G/ ker(ϕ) ∼= im(ϕ), so by Lagrange’s theorem,

|G/ ker(ϕ)| = |im(ϕ)|
|G|/|ker(ϕ)| = |im(ϕ)|
|G|/|im(ϕ)| = |ker(ϕ)|

Because ϕ is non-trivial, 1 < | im(ϕ)| ≤ |S3| = 6, so 48
6 ≤ |ker(ϕ)| < 48

1 and hence ker(ϕ) is a non-trivial
normal subgroup of G. △

Example. Let G be a group of order 2 552 = 8× 11× 29. Can G be simple?

Take p = 11, so |G| = 11× (8× 29) = 111 × 232. The number of Sylow 11-subgroups, r, must divide 232
and satisfy r ≡ 1 (mod 11). Consider the factorisation 232 = 23 × 29; the factors of 232 are then: 1, 2,
4, 8, 29 ≡ 7, 58 ≡ 3, 116 ≡ 6, and 232 ≡ 1, so r = 1,232 are the possible solutions.

Now, if G has more than 1 Sylow 11-subgroup, then it must have 232 Sylow 11-subgroups. As 11 is
prime, these subgroups must be cyclic, so every non-identity element generates the group. It follows
that these subgroups intersect only at the identity element, so each subgroup contributes 10 elements of
order 11, so there must be 232× 10 = 2 320 elements of order 11 in G.

Now, take p = 29, so |G| = 29 × (8 × 11) = 291 × 88. By identical arguments as before, the number of
Sylow 29-subgroups must be 1 or 88, and again, as 29 is prime, each subgroup must be cyclic, so if there
is more than 1 Sylow 29-subgroup, then there are 88× 28 = 2 464 elements of order 28.
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Now, by Sylow’s first theorem, there exist Sylow 29 and 11-subgroups. If there are more than one of
each, then we have 2 320 and 2 464 elements of order 11 and 29, respectively. But these values sum to
more than 2 552 = |G|, so we cannot simultaneously have more than 1 Sylow 29 and 11-subgroups. But
then, any unique Sylow p-subgroup is normal, so G cannot be simple. △

4.1.2 Proving a Particular Group is Simple

Corollary 4.1.3. Let G be a finite group and let p be a prime divisor of |G|. Define the set

Fp(G) := {x ∈ G : x ̸= 1G and |x| is a power of p}

Then,

(i) Let N be normal in G. If x ∈ N , then Gx ⊆ N .

(ii) Let N be normal in G and suppose p does not divide [G : N ]. Then,

(a) Sylp(N) = Sylp(G);

(b) Fp(G) = Fp(N).

Theorem 4.2. A5 is simple.

Proof. Suppose for a contradiction that A5 has a non-trivial proper subgroup N . By Lagrange’s theorem,
|N | divides |A5| = 5!/2 = 60, so the prime factors of |N | are 2, 3 and 5.

Now, note that

• A5 has 24 elements of order 5 – these are the 5-cycles, and there are P 5
5 = 5!

(5−5)! = 120 permutations
of 5 elements from {1,2,3,4,5}. Dividing by 5 to account for cyclic shifts, there are 120

5 = 24 such
elements;

• A5 has 20 elements of order 3 – these are the 3-cycles, and there are P 5
5 = 5!

(5−5)! = 120 permutations
of 5 elements from {1,2,3,4,5}. ;

• A5 has 15 elements of order 2 – are those of the form (ab)(cd) for a,b,c,d distinct elements of
{1,2,3,4,5}. There are P 5

4 = 5!
(5−4)! permutations of 4 elements from 5, but 2 ways to cyclic shift

within each cycle, and 2! ways to permute the cycles themselves, so there are 120
2·2·2! = 15 elements

of order 2.

Suppose p divides |N | for p = 3 or p = 5. Then, p does not divide [G : N ], so by Corollary 4.1.3(i),
Fp(G) = Fp(N).

If p = 3, then Fp(N) = Fp(G) = 20, so |N | ≥ 21. Since |N | divides 60 and is less than 60, |N | = 30.
Similarly, if p = 5, then Fp(N) = Fp(G) = 24, so |N | ≥ 25. Again, we must have |N | = 30.

So, if 3 or 5 divide |N |, then |N | = 30 and both 3 and 5 divide |N |, so F3(N) = 20 and F5(N) = 24.
But then, |N | = 30 > 20 + 24, which is a contradiction.

Now suppose neither 3 nor 5 divide |N |. By Lagrange’s theorem, |N | divides |G| = 4 · 3 · 5, so |N |
divides 4. By Cauchy’s theorem, there exists x ∈ N with order 2. By Corollary 4.1.3(ii), we then have
4 = |N | ≥ |Gx| = 15 ■

4.2 Simplicity of An

Lemma 4.3.

(i) Let n ≥ 3 and let Xn be the set of 3-cycles in Sn. Note that Xn ⊆ An since 3-cycles decompose
into a pair (i.e. an even number) of transpositions. Then, An = ⟨Xn⟩.
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(ii) Let n ≥ 5. Then, any two 3-cycles are conjugate in An.

Lemma 4.4. For n ≥ 5, any non-identity permutation σ ∈ An has a conjugate σ′ such that σ ̸= σ′ and
σ(i) = σ′(i) for some i ∈ {1,2, . . . ,n}.

Theorem 4.5. An is simple for all n ≥ 5.

Proof. We induct on n. We already have that A5 is simple, so assume n ≥ 6.

An acts on the set Xn = {1,2, . . . ,n} in the natural way. For each i ∈ Xn, define

Hi := StabAn(i)
∼= An−1

and by the inductive hypothesis, Hi
∼= An−1 is simple. Note that Hi contains a 3-cycle containing 3

points of Xn other than i.

Suppose A has a non-trivial proper subgroup N ◁ An. Take any non-identity permutation σ ∈ N . By
the previous lemma, there exists a conjugate σ′ ∈ N such that σ ̸= σ′ and σ(i) = σ′(i) for some i ∈ Xn.

Since normal subgroups are closed under conjugation, σ′ ∈ N , so σ−1σ′ ∈ N , σ−1σ′ ̸= 1An
, and

σ−1σ′(i) = i. Thus σ−1σ′ ∈ Hi and so N ∩Hi ̸= {1An
}.

Now, N ◁An so N ∩Hi ◁Hi by the second isomorphism theorem. But, Hi ⊆ N contains a 3-cycle, so by
Theorem 4.3(ii), N contains all 3-cycles of An. The result then follows from Theorem 4.3(i). ■

5 Classifying Groups of Small Order

5.1 Semidirect Products
Given two groups H and K, their cartesian product H ×K has group structure by applying the group
operations pointwise. This group is called the (external) direct product of H and K.

This extends naturally to any arbitrary collection of groups, with the product operation applied pointwise
on each coordinate.

Theorem 5.1. Let H and K be normal subgroups of a group G such that G = HK and H ∩K = {1G}.
Then,

(i) hk = kh for all h ∈ H and k ∈ K, so if H and K are both abelian, then G is abelian;

(ii) G ∼= H ×K.

Recall that an automorphism of a group G is an isomorphism G → G. The set Aut(G) of automorphisms
of G has group structure under function composition and is called the automorphism group of G.

Let H and K be groups, and let ϕ : H → Aut(K) be a homomorphism. Write ϕh for ϕ(h) and define a
binary operation · : (H ×K)× (H ×K) → H ×K by

(h1,k1) · (h2,k2) := (h1h2,ϕh−1
2
(k1)k2)

Then, (H ×K, · ) has group structure and is called the (external) semidirect product of H and K with
respect to ϕ, denoted by H ⋉ϕ K.

Example. Three important semidirect products are generated by homomorphisms as follows:

• The trivial homomorphism:

Let H and K be any groups. Then, the map ϕ : H → Aut(K) defined by ϕ(h) = idK is the trivial
homomorphism, and the resulting semidirect product operation is given by

(h1,k1) · (h2,k2) = (h1,h2,ϕh−1
2
(k1)k2)
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= (h1,h2, idK(k1)k2)

= (h1,h2,k1k2)

so
H ⋉ϕ K ∼= H ×K

• The inversion homomorphism:

Let H = C2 = ⟨c⟩ and let K be any abelian group. Then, the map ϕ : H → Aut(K) defined by
ϕ(1H) = idK and ϕ(h) = (k 7→ k−1) (i.e. the identity element is sent to the identity automorphism,
and every other element is sent to the inversion automorphism) is a homomorphism.

If K ∼= Cn, then the resulting semidirect product is isomorphic to the dihedral group of order 2n:

C2 ⋉ϕ Cn
∼= D2n

• The conjugation homomorphism:

Let G be a group and let H ≤ G and K ⊴ G. Then, the map ϕ : H → Aut(K) defined by
ϕ(h) = (k 7→ hkh−1) is a homomorphism.

This last homomorphism will be useful with the following lemma:

△

Lemma 5.2. Let G be a group and let H ≤ G and K ⊴ G. If G = HK and K ∩H = {1G}, then

G ∼= H ⋉ϕ K

Proof. ■

Example. Let n ≥ 3 be an integer, and consider the dihedral group G = D2n = ⟨σ,τ⟩, where

σ := (1, . . . ,n)

τ :−
⌊n

2 ⌋∏
i=1

(i,n− i+ 1)

Let K = ⟨σ⟩ = {1G,σ,σ2, . . . ,σn−1} and H = ⟨τ⟩ = {1G,τ}. Recall that τσ = τστ−1 = σ−1, so τk = k−1

for all k ∈ K.

Since |τ | = 2, |σ| = n, and D2n = K ⊔ τK, we have G = HK and H ∩K = {1G}, so by the previous
lemma, we have G ∼= H ⋉ϕ K, where ϕ is the inversion homomorphism. △

Lemma 5.3. Let G be a non-abelian finite group and suppose that

1. G has a cyclic subgroup K of order n := |G|/2;

2. G \K contains an element G of order 2;

3. If i ∈ {0,1, . . . ,n− 1} satisfies i2 ≡ 1 (mod n), then i ≡ ±1 (mod n).

Then,
G ∼= D2n

Example. The following are some examples of positive integers n that satisfy the third hypothesis of the
previous lemma.

• For n = 6, 02,12,22,32,42,52 ≡ 0,1,4,3,4,1 (mod 6), so i2 ≡ 1 (mod 6) if and only if i = 1,5 ≡
±1 (mod 6).
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• Let n = p where p is prime. Then,

i2 = 1

i2 − 1 = 0

(i− 1)(i+ 1) = 0

Since Z/pZ is a field, it has no zero divisors, so either i− 1 = 0 or i+ 1 = 0, so i2 = 1 if and only
if i = ±1 in Z/pZ.

• Let n = p2 where p is prime.

If p = 2, we have 02,12,22,32 ≡ 0,1,0,1 (mod 4), so i2 ≡ 1 (mod 4) if and only if i = 1,3 ≡
±1 (mod 4).

Otherwise, suppose p is odd and let i ∈ {0,1, . . . ,p2−1} such that i2 ≡ 1 mod p2. Then, p2 divides
(i− 1)(i+ 1).

Since p is odd, it divides at most one of the factors, because if it divided both, it would also divide
their difference (i + 1) − (i − 1) = 2, contradicting that p is odd. So, p2 also divides at most one
of the factors.

So, p2 divides i − 1 or i + 1. Then, since 0 ≤ i ≤ p2 − 1, the only possibilities are i = 1,p2 − 1 ≡
±1 (mod p2).

△

5.2 Semidirect Products of Abelian and Cyclic Groups
We consider the following special case of semidirect products: let G be a finite group with |G|/2 odd,
and suppose G has an abelian normal subgroup K of order |G|/2.

The commutator of two elements g,h ∈ G is the element [g,h] := ghg−1h−1. Similarly, we define the
subgroup [K,x] :=

〈
{[k,x] : k ∈ K}

〉
.

Lemma 5.4 (Fitting).

(i) xa = xax−1 = a−1 for all a ∈ [K,x];

(ii) K = CK(x)× [K,x];

(iii) G ∼=
(
H ⋉ϕ [K,x]

)
× CK(x), where ϕ : H → Aut

(
[K,x]

)
is the inversion homomorphism.

5.3 Abelian Groups
Theorem 5.5 (Fundamental Theorem of Finite Abelian Groups). Let G be a finite abelian group. Then,
there exist divisors d1, . . . ,dr of |G| such that d1 | d2 | · · · | dr and

G ∼=
r⊕

i=1

Zdi

5.4 Groups of order p, p2, or 2p, for prime p

Lemma 5.6. If |G| = p with p prime, then G ∼= Cp.

Proof. Take any non-identity element g ∈ G. By lagrange’s theorem, |g| divides |G| = p. Since g ̸= 1G,
|g| = p so G = ⟨g⟩. ■

Lemma 5.7. If |G| = p2 with p prime, then either G ∼= Cp2 or G ∼= Cp × Cp.
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Proof. We have already proved that all groups of order p2 are abelian (Corollary 3.11.1), so G is abelian.
The fundamental theorem of finite abelian groups then gives the result. ■

Lemma 5.8. If |G| = 2p with p ̸= 2 prime, then either G ∼= C2p or G ∼= D2p.

Proof. If G is abelian, then G ∼= C2 × Cp
∼= C2p by the fundamental theorem of finite abelian groups.

Otherwise, G is non-abelian. Let P ∈ Sylp(G). The number r of Sylow p-subgroups divides 2 and
satisfies r ≡ 1 (mod p), so since p ̸= 2, we must have r = 1, so P ⊴ G.

Since p is odd, it follows that all elements of G of order 2 lie in G \ P . Also, since Z/pZ is a field, the
only solutions of the equation i2 − 1 = 0 are congruent to ±1 modulo p. Then, Theorem 5.3 gives that
G ∼= D2p, as required. ■

5.5 Groups of order 2p2, for odd prime p

Let p ̸= 2 be prime, H = C2, and K = Cp × Cp. Let ϕ : H → Aut(K) be the inversion homomorphism.
The group H ⋉ϕ K is then called the generalised dihedral group of order 2p2 and is denoted by GD2p2 .

Lemma 5.9. If |G| = 2p2 with p ̸= 2 prime, then G is isomorphic to one of the following:

• C2p2 ;

• Cp × C2p;

• Cp ×D2p;

• D2p2 ;

• GD2p2 .

5.6 Groups of order pq, for prime p,q with p < q and p ∤ q − 1

Lemma 5.10. Let |G| = pq with p,q prime, satisfying p < q and p ∤ q − 1. Then, G ∼= Cpq.

Proof. The number r of Sylow p-subgroups divides q and satisfies r ≡ 1 (mod p). If r = q, then
q ≡ 1 (mod p), so q − 1 ≡ 0 (mod p), contradicting that p does not divide q − 1. Thus, r = 1.

Similarly, the number s of Sylow q-subgroups divides p and satisfies s ≡ 1 (mod q). Since p < q, p is
already a least residue modulo q, so s = p leads to a contradiction p ≡ 1 (mod q), so s = 1.

So, G has a normal Sylow p-subgroup, say H, and a normal Sylow q-subgroup, say K. By Lagrange’s
theorem, H ∩K = {1G}. By Theorem 3.13,

|HK| = |H||K|
|H ∩K|

=
pq

1
= pq = |G|

so G = HK. Then, by Theorem 5.1, G ∼= H × K. Note that, being of prime order, H and K are
both cyclic. Let H = ⟨h⟩ and K = ⟨k⟩. These generators commute, so |hk| = |h||k| = pq = |G|, so
G = ⟨xy⟩ = Cpq, as required. ■

We have now classified all groups of the following orders:

1,2,3,4,5,6,7,9,10,11,13,14,15,17,18

We will not classify groups of order 16, as there are too many, but we will now classify groups of order
8 and 12.
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5.7 Groups of order 8

We have already seen a non-cyclic group of order 8, namely D8. We now define another.

The quaternion group Q8 is the group of unit basis quaternions under quaternion multiplication:

Q8 := {1,i,j,k,−1,−i,−j,−k}

That is,

• 1q = q1 = q and (−1)q = q(−1) = −q for all q ∈ Q8;

• ij = −ji = k, jk = −kj = i, and ki = −ik = j;

• 12 = 1, and i2 = j2 = k2 = ijk = −1.

The quaternion group can also be defined as the group with presentation

Q8 := ⟨i,j,k | i2 = j2 = k2 = ijk⟩

where the identity is denoted 1, the element i2 = j2 = k2 = ijk is denoted −1, and the elements i3, j3,
and k3 are denoted −i, −j, and −k, respectively.

Lemma 5.11.

(i) Z(Q8) = {±1}.

(ii) G has 1 element of order 2, namely −1, and 6 elements of order 4, namely ±i, ±j, and ±k.

(iii) G = ⟨i,j⟩ = ⟨j,k⟩ = ⟨k,i⟩.

(iv) Q8 ̸∼= D8 since D8 has 5 elements of order 2 and 2 elements of order 4.

Lemma 5.12. If |G| = 8, then G is isomorphic to one of the following:

• C2 × C2 × C2;

• C4 × C2;

• C8;

• D8;

• Q8.

5.8 Groups of order 12

We have already seen some non-cyclic groups of order 12, namely D12 and A4. We now define another.

Let H = C4 = ⟨h⟩ and K = C3. Define ϕ : H → Aut(K) by ϕ(hi) = (k 7→ k(−1)i). The resulting
semidirect product H ⋉ϕ K is called the dicyclic group of order 12, denoted by Dic12.

Lemma 5.13. If |G| = 12, then G is isomorphic to one of the following:

• C3 × C2 × C2
∼= C6 × C2;

• C12;

• D12;

• A4;

• Dic12.
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5.9 Unique Simple Group of Order 60

Theorem 5.14. If |G| = 60, then G ∼= A5.

6 Soluble Groups

6.1 Composition Series
We write H < G or H ⪇ G to mean that H is a proper subgroup of G, and similarly, H ◁ G or H |⪇ G
to mean that H is a proper normal subgroup of G.

A composition series of a group G is a sequence of nested normal subgroups (Gi)
r
i=1 satisfying

{1G} = G0
|⪇ G1

|⪇ G2
|⪇ · · · |⪇ Gr = G

such that Gi/Gi−1 is simple for each 1 ≤ i ≤ r, and r is called the length of the series.

Example.

1. Let p ̸= 2 be prime and let G = D2p = ⟨σ,τ⟩. Let G0 = {1G}, G1 = ⟨σ⟩ ∼= Cp, and G2 = G. These
groups satisfy the normality requirements, and the quotients are given by G1/G0

∼= G1
∼= Cp,

G2/G1
∼= ⟨τ⟩ ∼= C2, which are both simple. Thus,

{1G} |⪇ ⟨σ⟩ |⪇ D2p

is a composition series of length 2.

2. Let n ≥ 5, and let G = Sn. Let G0 = {1G}, G1 = An, and G2 = Sn. These groups satisfy the
normality requirements, and the quotients are given by G1/G0

∼= G1
∼= An, G2/G1

∼= C2, which
are both simple. Thus,

{1G} |⪇ An
|⪇ Sn

is a composition series of length 2.

3. Let G = D8 = ⟨σ,τ⟩. Let G0 = {1G}, G1 = ⟨σ2⟩, G2 = ⟨σ⟩, and G3 = D8. These groups satisfy
the normality requirements, and the quotients are all isomorphic to C2, which is simple, so

{1G} |⪇ ⟨σ2⟩ |⪇ ⟨σ⟩ |⪇ D8

is a composition series of length 3.

△

Note that if G is the trivial group, then the series

{1G} = G0 = G

is a composition series of G of length 0.

Theorem 6.1. Every finite group has a composition series.

Corollary 6.1.1. Let G be a finite group and let N ⊴ G. Suppose that

{1G} = N0
|⪇ N1

|⪇ · · · |⪇ Nr = N

{1G} =
X0

N
|⪇
X1

N
|⪇ · · · |⪇

Xs

N
=

G

N

are composition series for N and G/N , respectively, where each Xi in the second series is a subgroup of
G containing N . In particular, X0 = N and Xs = G.

Then,
{1G} = N0

|⪇ N1
|⪇ · · · |⪇ Nr = N = X0

|⪇ X1
|⪇ · · · |⪇ Xs = G

is a composition series for G of length r + s.
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6.2 Jordan-Hölder Theorem
Two composition series I and II of a group G

{1G} = A0
|⪇ A1

|⪇ · · · |⪇ Ar = G (I)

{1G} = B0
|⪇ B1

|⪇ · · · |⪇ Bs = G (II)

are equivalent and write I ∼ II if r = s and there is a bijection

f : {Ai/Ai−1 : 1 ≤ i ≤ r} → {Bi/Bi−1 : 1 ≤ i ≤ s}

such that Ai/Ai−1
∼= f(Ai/Ai−1) for each 1 ≤ i ≤ r.

Theorem 6.2 (Jordan-Hölder). Let

{1G} = A0
|⪇ A1

|⪇ · · · |⪇ Ar = G (I)

{1G} = B0
|⪇ B1

|⪇ · · · |⪇ Bs = G (II)

be two composition series of a finite group G. Then, I ∼ II.

This theorem implies that, up to isomorphism, the quotients Gi/Gi−1 and the length r of any composition
series of a finite group G are invariants of that group.

Let
{1G} = G0

|⪇ G1
|⪇ G2

|⪇ · · · |⪇ Gr = G

be a composition series for a finite group G, with uniqueness up to equivalence given by the Jordan-
Hölder theorem. Then, the quotient groups Gi/Gi−1 for 1 ≤ i ≤ r are called the composition factors of
G, and r is called the composition length of G.

A finite group is soluble if it is trivial or if its composition factors are all cyclic groups of prime order (or
equivalently, simple abelian groups).

Example.

(i) Let G be a finite abelian group. Then, any quotient of any subgroup of G is abelian, so any
composition factor of G is a simple abelian group, i.e. a cyclic group of prime order. Thus, all
abelian groups are soluble.

(ii) Let n ≥ 5 and consider An. Then, An is a non-abelian simple group, so it has precisely one
composition factor, namely itself, which is non-abelian. Thus, An is not soluble for any n ≥ 5.

△

Lemma 6.3. Let G be a finite group and let N be normal in G. Then, G is soluble if and only if both
N and G/N are soluble.

Proof. Write CF(G) for the (multi)set of composition factors of G. By Corollary 6.1.1 and the Jordan-
Hölder theorem,

CF(G) = CF(N) ∪ CF(G/N)

Thus, G is soluble if and only if both N and G/N are soluble. ■

Example. Let G = D2n = ⟨σ,τ⟩ and let N = ⟨σ⟩ ⊴ G. N is abelian and |G/N | = 2, so G/N is abelian,
so both are soluble, and hence G is soluble. △
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6.3 Commutators

Recall that the commutator of two elements g,h ∈ G is the element [g,h] := ghg−1h−1. Note that
[g,h] = 1G if and only if g and h commute.

Example. Consider the alternating group A5.[
(1,2,4),(1,3,5)

]
= (1,2,4)(1,3,5)(1,2,4)−1(1,3,5)−1

= (1,2,4)(1,3,5)(4,2,1)(5,3,1)

= (1,2,3)

More generally, if {x,a,b,c,d} = {1,2,3,4,5},[
(x,a,b)(x,c,d)

]
= (x,a,b)(x,c,d)(b,a,x)(d,c,x) = (x,a,c)

△

The commutator subgroup [G,G] is the subgroup of G generated by all of its commutators:

[G,G] :=
〈
[g1,g2]

∣∣ g1,g2 ∈ G
〉

More generally, if H,K ≤ G, we define

[H,K] :=
〈
[h,k]

∣∣ h ∈ H,k ∈ K
〉

to be the commutator subgroup of H and K.

Example.

1. In any abelian group G, [g,h] = 1G for all g,k ∈ G, so the commutator subgroup [G,G] = ⟨1G⟩ =
{1G} is trivial.

2. Let G = A5. As seen in the example above, every 3-cycle in A5 is the commutator of some pair of
3-cycles. But A5 is generated by 3-cycles, so [A5,A5] = A5.

△

The abelianisation Gab of a group G is the quotient G/[G,G].

Theorem 6.4. For any group G,

(i) [G,G] ⊴ G;

(ii) Gab is abelian.

(iii) If N is normal in G and G/N is abelian, then [G,G] ≤ N

Proof. (i) For all g,h,j ∈ G,

g[h,k]g−1 = ghkh−1k−1g−1

= gh(g−1g)k(g−1g)h−1(g−1g)k−1g−1

= (ghg−1)(gkg−1)(gh−1g−1)(gk−1g−1)

= (ghg−1)(gkg−1)(ghg−1)−1(gkg−1)−1

= [ghg−1,gkg−1]

∈ [G,G]

For a general element [h1,k1][h2,k2] · · · [hr,kr] ∈ [G,G], we have,

g[h1,k1][h2,k2] · · · [hr,kr]g
−1 = g[h1,k1](g

−1g)[h2,k2](g
−1g) · · · (g−1g)[hr,kr]g

−1
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=
(
g[h1,k1]g

−1
)(
g[h2,k2]g

−1
)
· · ·

(
g[hr,kr]g

−1
)

∈ [G,G]

so [G,G] ⊴ G.

(ii) We prove a more general statement: a quotient group G/N is abelian if and only if every commu-
tator is in N . That is, if and only if [G,G] ⊆ N .

Let g,h ∈ G. Then,

(gN)(hN) = (hN)(gN)

(gN)(hN) = (hN)(gN)N

(gN)−1(hN)−1(gN)(hN) = N

[gN,hN ] = N

[g,h]N = N

[g,h] ∈ N

where we used that N is the identity in G/N on the second line. So, gH and hN commutes if
and only if [g,h] ∈ N , so G/N is abelian if and only if [g,h] ∈ N for all g,h ∈ G. In particular,
if N = [G,G], then every commutator is in N be definition of the commutator subgroup, so
Gab = G/[G,G] is abelian.

(iii) Proved in part (ii).

■

Corollary 6.4.1. A group G is abelian if and only if [G,G] = {1G}.

Given a group G, define G(0) := G and recursively define the nth derived subgroup as

G(n) :=
[
G(n−1),G(n−1)

]
for each n ∈ N. Then, the descending series

G(0) ≥ G(1) ≥ G(2) ≥ · · · ≥ G(n) ≥ G(n+1) ≥ · · ·

is called the derived series of G.

By definition, we have

•
(
G(n)

)(m)
= G(n+m);

• H(n) ≤ G(n) for all H ≤ G.

Theorem 6.5. Let G be a finite group. Then, G is soluble if and only if G(n) = {1G} for some n ∈ N.

Proof. Suppose G is soluble. We induct on |G|.

If |G| = 1, then G is trivial, as is G(0). Suppose otherwise that |G| > 1 and define N := [G,G] ⊴ G.
Then, N is soluble by Theorem 6.3, as it is a normal subgroup of a soluble group.

By definition of solubility, G has a composition series

{1G} = G0
|⪇ G1

|⪇ · · · |⪇ Gr = G

where all the composition factors Gi/Gi−1 are cyclic with prime order. In particular, G/Gr−1 is cyclic
and hence abelian, so [G,G] = N ≤ Gr−1, giving |N | < |G|. So, N (m) = {1G} for some m ∈ N by the
inductive hypothesis. Since G(n) = [G,G](n−1) by definition, it follows that Gm+1 = {1G} as required.
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Now, for the reverse implication, suppose that G(n) = {1G} for some n ∈ N. We induct on |G|.

If |G| = 1, then G is trivial and hence soluble. Suppose otherwise that |G| > 1 and again define
N := [G,G] ⊴ G. If N = G, then G(n) = [G,G](n−1) = G(n−1) = · · · = G(1) = G(0) = G, which
contradicts the inductive hypothesis. So, N |⪇ G.

Since N (n−1) = [G,G](n−1) = G(n) = {1G}, N is soluble by the inductive hypothesis. Also, G/N =
G/[G,G] = Gab is abelian and hence soluble. So, G is also soluble by Theorem 6.3. ■

A previous result gave that normal subgroups of a soluble group are soluble, but this theorem implies
that any subgroup of a soluble group is soluble.

Corollary 6.5.1. If G is a finite soluble group, and H ≤ G, then H is soluble.

Proof. Since G is soluble, G(n) = {1G} for some n ∈ N. Since H(n) ≤ G(n), we must have H(n) = {1G},
so H is soluble. ■

6.4 Examples of Soluble Groups
Theorem 6.6. Let G be a group of order pn for some prime p and n ∈ N. Then, G is soluble, and
furthermore, all composition factors of G are isomorphic to Cp.

Proof. We proceed by strong induction on |G|.

If |G| = p1 = p, then G ∼= Cp is cyclic of prime order, so G is soluble with composition length 1, and its
composition factor is Cp.

Assume that |G| = pn > p and that the result holds for all groups of order less than |G|. Then, by
Theorem 3.11, the centre Z := Z(G) is non-trivial. The centre Z is abelian and hence soluble. Also,
G/Z is soluble by the inductive hypothesis, so G is soluble by Theorem 6.3. ■

Theorem 6.7. Let G1 and G2 be finite soluble groups. Then, G := G1 ×G2 is soluble.

Proof. Consider the projection homomorphism π1 : G → G1. Define N := ker(π) = {1G1
} × G2

∼= G2,
so N is soluble.

Also, im(π) = G1 is soluble, so by the first isomorphism theorem,

G/ ker(π) ∼= im(π)

G/N ∼= G1

and hence G/N is soluble, so G is soluble by Theorem 6.3. ■

Corollary 6.7.1. Let G1, . . . ,Gt be finite soluble groups. Then, G := G1 × · · · ×Gt is soluble.

Proof. Induction on the previous result. ■
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